Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles.

نویسندگان

  • Fady T Botros
  • L Gabriel Navar
چکیده

Heme oxygenases (HO-1 and HO-2) catalyze the conversion of heme to carbon monoxide (CO), iron, and biliverdin. CO causes vasorelaxation via stimulation of soluble guanylate cyclase (sGC) and/or activation of calcium-activated potassium channels. Because nitric oxide (NO) exerts effects via the same pathways, we tested the interaction between CO and NO on rat afferent arterioles (AAs) using the blood-perfused juxtamedullary nephron preparation. AAs were superfused with either tricarbonyldichlororuthenium (II) dimer, known as CO releasing molecule (CORM-2), 10 micromol/l CO solution, or 15 micromol/l chromium mesoporphyrin (CrMP, HO inhibitor). AAs were also superfused with 1 mmol/l N(omega)-nitro-L-arginine (L-NNA) to inhibit NO synthase (NOS) or 10 micromol/l 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one to inhibit sGC, and then CrMP was superfused during NOS inhibition or sGC inhibition. Treatment with 150 and 300 micromol/l CORM-2 or with CO (10 micromol/l) significantly dilated AAs (22.0 +/- 0.9 and 22.8 +/- 0.9 vs. 18.3 +/- 0.9 microm, n = 5, P < 0.05; and 26.0 +/- 1.4 vs. 18.8 +/- 0.7 microm, n = 5, P < 0.05). In untreated vessels, HO inhibition did not alter AA diameter (17.5 +/- 0.7 vs. 17.2 +/- 0.6 microm, n = 7, P > 0.05); however, during inhibition of NO production, which constricted arterioles to 14.6 +/- 1.2 microm, n = 6, P < 0.05, concurrent HO inhibition led to further vasoconstriction (11.7 +/- 1.6 microm, n = 6, P < 0.05). CORM-2 attenuated the L-NNA-induced vasoconstriction. Inhibition of sGC caused significant constriction (15.7 +/- 0.4 vs. 18.8 +/- 0.4 microm, n = 6, P < 0.05). HO inhibition during sGC inhibition did not cause further change in AAs (15.5 +/- 0.7 microm, n = 6). We conclude that endogenously produced CO does not exert a perceptible influence on AA diameter in the presence of intact NO system; however, when NO production is inhibited, CO serves as an important renoprotective reserve mechanism to prevent excess afferent arteriolar constriction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon monoxide contributes to hypotension-induced cerebrovascular vasodilation in piglets.

The gaseous compound carbon monoxide (CO) has been identified as an important endogenous biological messenger in brain and is a major component in regulation of cerebrovascular circulation in newborns. CO is produced endogenously by catabolism of heme to CO, free iron, and biliverdin during enzymatic degradation of heme by heme oxygenase (HO). The present study was designed to test the hypothes...

متن کامل

Carbon monoxide promotes endothelium-dependent constriction of isolated gracilis muscle arterioles.

Vascular tissues express heme oxygenase, which metabolizes heme to form carbon monoxide (CO). CO promotes relaxation of vascular smooth muscle but also inhibits nitric oxide (NO) formation. This study examines the hypothesis that CO promotes endothelium- and NO synthase-dependent vasoconstriction of isolated arterioles. Studies were conducted on pressurized first-order gracilis muscle arteriole...

متن کامل

Inhibition of cellular respiration by endogenously produced carbon monoxide.

Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit c...

متن کامل

Nitric oxide modulates vascular tone in preglomerular arterioles.

Blockade of nitric oxide reduces renal blood flow, but the site or sites at which nitric oxide alters renal vascular resistance are unknown. The effects of N omega-nitro-L-arginine (100 microM), an inhibitor of nitric oxide synthesis, on the pressure-diameter relation of renal arterioles was studied using a rat juxtamedullary microvascular preparation perfused in vitro with a physiological salt...

متن کامل

Carbon monoxide as an endogenous vascular modulator.

Carbon monoxide (CO) is produced by heme oxygenase (HO)-catalyzed heme degradation to CO, iron, and biliverdin. HO has two active isoforms, HO-1 (inducible) and HO-2 (constitutive). HO-2, but not HO-1, is highly expressed in endothelial and smooth muscle cells and in adjacent astrocytes in the brain. HO-1 is expressed basally only in the spleen and liver but can be induced to a varying extent i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 6  شماره 

صفحات  -

تاریخ انتشار 2006